If it's not what You are looking for type in the equation solver your own equation and let us solve it.
49x^2-150x+9=0
a = 49; b = -150; c = +9;
Δ = b2-4ac
Δ = -1502-4·49·9
Δ = 20736
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{20736}=144$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-150)-144}{2*49}=\frac{6}{98} =3/49 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-150)+144}{2*49}=\frac{294}{98} =3 $
| 4(x+1)+26=-2 | | 7t-5=68 | | x-13÷3=3+x÷5 | | 4(8-x)=4x+16 | | 23x+4=48+x | | 8(z-3)=32 | | 2(c+1)=10c= | | 2(x-1)=36 | | 2-2(x+3)=6-x | | -7y=21-21 | | 0.3(x+5)=36 | | d/5-4=1 | | -8=b-41-6 | | –8=b−41–6 | | -9(13+x)=36 | | 24-4s=16 | | z/5+24=30 | | 7n-2+4=19 | | 7+4(3x-2)=10x+3 | | x^2(0.6+0.4x)=0.5 | | 8=3s−–2 | | 13x+10x=203 | | 2=-1-g/3 | | 2(x-3)-4(5-x)-1(x-6)=0 | | 8(2x-10)+4=31 | | x+x+1234554321+3-4+15*3/4=90 | | x-13/3=3+x/5 | | 0.5(x+7)=6.8 | | x+x+3-4+15*3=90 | | 3(-4y+8)=36 | | 16y=y | | 6=m.3 |